

https://doi.org/10.1515/jpm-2020-0355
Received July 27, 2020; accepted August 21, 2020; published online September 25, 2020

Abstract

Objectives: To evaluate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcomes in pregnancies with laboratory confirmed COVID-19.

Methods: Secondary analysis of a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. The primary outcome was a composite adverse fetal outcome, defined as the presence of either abortion (pregnancy loss before 22 weeks of gestation), stillbirth (intrauterine fetal death after 22 weeks of gestation), neonatal death (death of a live-born infant within the first 28 days of life), and perinatal death (either stillbirth or neonatal death). Logistic regression analysis was performed to evaluate parameters independently associated with the primary outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI).

Results: Mean gestational age at diagnosis was 30.6±9.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. There were six miscarriage (2.3%), six intrauterine device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 226 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler. Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8–0.9 per week increase; p<0.001), birthweight (OR: 1.17, 95% CI 1.09–1.12.7 per 100 g decrease; p=0.012) and maternal ventilatory support, including either need for oxygen or CPAP (OR: 4.12, 95% CI 2.3–7.9; p=0.001) were independently associated with composite adverse fetal outcome.

Conclusions: Early gestational age at infection, maternal ventilatory supports and low birthweight are the main determinants of adverse perinatal outcomes in fetuses with maternal COVID-19 infection. Conversely, the risk of vertical transmission seems negligible.

Keywords: Coronavirus; perinatal mortality; perinatal morbidity.

*Corresponding author: Cihat Sen, Perinatal Medicine Center, Memorial BAH Hospital and mPerinatal Medicine Foundation, Istanbul 34367, Turkey, E-mail: csen@perinatal.org.tr

Daniele Di Mascio, Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy

Gabriele Saccone, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy

Alberto Galindo, Fetal Medicine Unit, Maternal and Child Health and Development Network, University Hospital 12 de Octubre, Complutense University of MadridDepartment of Obstetrics and Gynaecology, Madrid, Spain

Amos Grünebaum and Frank Chervenak, Department of Obstetrics and Gynaecology, Lenox Hill Hospital, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA

Jun Yoshimatsu, Department of Perinatology and Gynaecology, National Cerebral and Cardiovascular Center, Osaka, Japan

Milan Stanojevic and Asım Kurjak, Department of Obstetrics and Gynaecology, Medical School University of Zagreb, Sveti Duh University Hospital, Zagreb, Croatia

Full author list and affiliations given at the end of the article.
Introduction

Towards the end of 2019, a novel Coronavirus mutation - labelled as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) - was identified as the cause of a respiratory illness called COVID-19, that suddenly became epidemic in China, and then dramatically spread in many other countries worldwide as a global pandemic [1–9].

Despite rigorous mitigation measures adopted by governments to reduce both the virus spread and its detrimental effects on healthcare systems and therefore on the whole worldwide economy [10], COVID-19 has currently affected about five millions of people with more than 300,000 deaths [11].

Although evidence is accumulating rapidly, there are still several outstanding issues that need to be settled soon regarding the effect of COVID-19 on perinatal outcomes to guide the antenatal counselling and management of women with COVID-19 during pregnancy.

In a large multinational cohort study, we have recently shown that COVID-19 in pregnant women is associated with low rate of maternal mortality, but 11.1% rate of admission to intensive care unit (ICU) [12].

However, an accurate risk stratification of women with COVID-19 is needed to ascertain the association between different maternal characteristics or clinical findings and adverse perinatal outcomes, in order to more appropriately tailor their management.

The primary aim of this study was to report perinatal outcome in pregnancies complicated by COVID-19 infection; the secondary aim was to elucidate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcome in these pregnancies.

Materials and methods

Study design and participants

This is a secondary analysis of the World Association of Perinatal Medicine (WAPM) study [12]. The WAPM study was a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries (Argentina, Australia, Belgium, Brazil, Colombia, Czech Republic, Finland, Germany, Greece, Israel, Italy, North Macedonia, Peru, Portugal, Republic of Kosovo, Romania, Russia, Serbia, Slovenia, Spain, Turkey, and United States).

COVID-19 was diagnosed on the basis of The World Health Organization (WHO) interim guidance [13]. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens [14, 15].

The study was approved by the IRB of the University of Naples Federico II (April 2020, approval number: 145/2020).

A composite adverse fetal outcome was defined as the presence of either:
- Abortion, defined as pregnancy loss before 22 weeks of gestations,
- Stillbirth, defined as intrauterine fetal death after 22 weeks of gestation,
- Neonatal death, defined as death of a live-born infant within the first 28 days of life,
- Perinatal death, defined as either stillbirth or neonatal death.

Statistical analysis

Statistical analysis was performed using Statistical Package for Social Sciences (SPSS) v. 19.0 (IBM Inc., Armonk, NY, USA). Continuous variables were reported as means ± standard deviation (SD), while categorical as numbers (percentage). Univariate comparisons of dichotomous data were performed with the use of the χ²-test with continuity correction. Comparisons between groups were performed with the use of the T-test to test group means by assuming equal within-group variances for parametric data, and with the use of Wilcoxon and Mann-Whitney tests for nonparametric data. We also planned to test the strength of association between different maternal and pregnancy characteristics, and clinical, radiological, and laboratory findings, with a composite adverse fetal outcome. Logistic regression analysis was also performed to evaluate parameters independently associated with a composite adverse fetal outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI). For the purpose of the analysis, this analysis was performed including only women with completed pregnancy. A p-value <0.05 was considered statistically significant.

Results

The WAPM study involved 388 singleton pregnancies positive to COVID-19 at RT-PCR nasal and pharyngeal swab, in 73 centers from 22 different countries.

Mean gestational age at diagnosis was 30.6±9.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. Included women were asymptomatic in 24.2% of cases. The most common symptom at the time of triage was cough (52.1%), followed by fever (44.1%), while shortness of breath was complained by 60 women (15.5%). 11.1% of women were admitted to ICU, and 6.4% requiring intubation. There were three cases of maternal deaths, accounting for a maternal mortality rate of 0.8% [12].

Evaluation of the potential risk factors associated with the occurrence of the composite adverse fetal outcome was performed only in women with completed pregnancy.

Table 1 shows perinatal outcomes from the WAPM study. There were six miscarriage (2.3%), six intrauterine
device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 248 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler (reverse end diastolic flow in the umbilical artery, increased ductus venosus pulsatility index, absent or reverse a wave in the ductus venosus). Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. Unfortunately, amniotic fluid was not tested, and specimens from placenta were not obtained, thus questioning whether the infection occurred in utero (antenatal vertical transmission) or after immediately prior or after birth (perinatal vertical transmission). When exploring maternal and pregnancy characteristics, gestational age at diagnosis was lower (23.2±10.9 vs. 35.0±6.4, p<0.001) in fetuses with composite adverse outcome, while there was no difference in maternal age at the infection between the two study groups. Similarly, the incidence of composite adverse fetal outcome was significantly higher when the infection occurred in the first trimester (35.3 vs. 2.9%, p<0.001). The incidence of composite adverse fetal outcome was significantly higher in fetuses with lower birthweight (2007±1014 g vs. 2939±755, p<0.001), while it was similar in nulliparous women, women smoking during pregnancy or with chronic, pre-existing conditions, women undergone flu vaccination, and those with a positive CT scan.

When focusing on clinical, radiological and laboratory findings, maternal need for oxygen (41.2 vs. 17.3%, p=0.02) and CPAP (29.4 vs. 8.5%, p=0.02) were significantly associated with composite adverse fetal outcome. Finally, no difference was found when evaluating the effect different pharmacologic treatments (LMWH, azithromycin, antiviral drugs or hydroxychloroquine) on composite adverse fetal outcome. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8–0.9 per week increase; p<0.001), birthweight (OR: 1.17, 95% CI 1.09–1.27 per 100 g decrease; p=0.012) and maternal ventilatory support, including either need for oxygen or CPAP (OR: 4.12, 95% CI 2.3–7.9; p=0.001) were independently associated with composite adverse fetal outcome.

Table 1: Perinatal outcomes from the WAPM study [12].

<table>
<thead>
<tr>
<th>Women with completed pregnancies (n=266)</th>
<th>% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective termination of pregnancy</td>
<td>3 (1.1 (0.4–3.3))</td>
</tr>
<tr>
<td>Stillbirth</td>
<td>6 (2.3 (1.0–4.8))</td>
</tr>
<tr>
<td>Perinatal death</td>
<td>11 (4.1 (2.3–7.3))</td>
</tr>
<tr>
<td>IUGR</td>
<td>10 (3.8 (2.1–6.8))</td>
</tr>
<tr>
<td>Preterm birth</td>
<td>70 (26.3 (21.4–31.9))</td>
</tr>
<tr>
<td>Live-born infants</td>
<td>251 (94.4 (90.9–96.6))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Women with live-born infants (n=251)</th>
<th>% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible vertical transmission</td>
<td>1 (0.4 (0.07–2.2))</td>
</tr>
<tr>
<td>Neonatal death<sup>a</sup></td>
<td>5 (2.0 (0.9–4.6))</td>
</tr>
<tr>
<td>Admission to NICU</td>
<td>69 (27.5 (22.3–33.3))</td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>101 (40.2 (34.4–46.4))</td>
</tr>
<tr>
<td>Skin to skin</td>
<td>69 (27.5 (22.3–33.3))</td>
</tr>
<tr>
<td>Low birth weight</td>
<td>52 (20.7 (16.2–26.2))</td>
</tr>
<tr>
<td>Cesarean delivery</td>
<td>136 (54.2 (48.0–60.2))</td>
</tr>
<tr>
<td>Spontaneous first-trimester abortion<sup>b</sup></td>
<td>6/31 (19.4 (9.2–36.3))</td>
</tr>
<tr>
<td>Gestational age at delivery, years, mean ± SD</td>
<td>37.2 ± 3.9</td>
</tr>
<tr>
<td>Birth weight, grams, mean ± SD</td>
<td>2919 ± 772</td>
</tr>
</tbody>
</table>

Data are presented as number (percentage) or as mean ± standard deviation (SD). NICU, neonatal intensive care unit; LBW, low birth weight; IUGR, intrauterine growth restriction.^aIncluding only live-born infants.^bIncluding only women with first trimester infection.

Discussion

Summary of the main findings

The findings from this study showed that, in pregnancies complicated by COVID-19 infection, the rate of perinatal death was about 4%, mainly related to prematurity. Early gestational age at diagnosis, gestational age at diagnosis, birthweight and maternal ventilatory support were the only factors independently associated with adverse fetal outcome. Finally, the risk of vertical transmission was negligible.

Strengths and limitations

To our knowledge, this may be the largest cohort of COVID-19 during pregnancy published so far. Strengths and limitations of this secondary analysis are those inherent in the WAPM study. The enrollment of only cases with laboratory-confirmed COVID-19 and the inclusion of both University Hospitals and Community Hospitals from...
different countries represent the major strengths of this study. The major limitation of the study is the incidence of the composite adverse perinatal outcome in the overall population is low, thus making our sample size potentially underpowered to draw any convincing evidence. Another limitation is the inclusion of only high-income and middle-income countries, and therefore we acknowledge that in low-income countries perinatal outcomes might be even worse [3].

Implications for clinical practice and research

COVID-19 has brought the scientific community into unprecedented times and currently represents the major global public health issue. Despite the growing number of reports published so far [16–18], evidence is still limited particularly when focusing on vulnerable conditions, such as pregnancy.

We have recently shown that COVID-19 in pregnant women is associated with low rate of maternal mortality, but 11.1% rate of admission to ICU. Furthermore, earlier gestational age at presentation, shortness of breath as presenting symptom, and increased lactate dehydrogenase (LDH) levels were independently associated with composite adverse maternal outcome including either admission to intensive care unit, use of mechanical ventilation or death [12].

In this secondary analysis, we planned to ascertain whether different maternal and pregnancy characteristics; clinical, laboratory or radiological findings and pharmacological treatments could be associated with serious adverse perinatal outcomes, including stillbirths and neonatal deaths, and we found that earlier gestational age at diagnosis, birthweight and maternal ventilatory support were independently associated with a composite adverse perinatal outcome.

Gestational age at diagnosis is a peculiar issue when assessing pregnancies affected by viral infections and the occurrence of the infection earlier in pregnancy is usually associated with worse fetal outcomes. In a large meta-analysis of cohort and case-control studies, maternal seasonal influenza or influenza-like illness in the first trimester was associated with a significantly higher risk of congenital abnormalities, such as cleft lip, neural tube defects, hydrocephaly, and congenital heart defects [19]. Moreover, recent data on women with a primary Cytomegalovirus infection and an infected child aged at least 1 year at the time of the analysis show that the infection can be severe only when the virus hits the fetus in the embryonic or early fetal period [20]. Alongside the high burden of fetal morbidity, parvovirus B19 infection in the first trimester of pregnancy was associated with an increased risk of fetal loss [21] and fetal death is generally observed when the infection occurs before the completed 20 weeks of gestation [22].

These data are concordant with our results, as COVID-19 infection in the first trimester was significantly associated with the occurrence of a composite adverse fetal outcome, while there was no difference when the infection occurred during the second and the third trimester of pregnancy.

Therefore, longitudinal evaluation of pregnancies affected with COVID-19 is recommended to rule out any potential factor that may significantly impact short and long-term prognosis. In this scenario, the use of neurosonography and fetal magnetic resonance imaging (MRI), that has significantly spread in the past few years in several fields of maternal fetal medicine [23, 24], might be judiciously considered as useful imaging techniques for a complete fetal assessment.

Perinatal death is certainly one of the main concern of maternal fetal specialists. So far, the rate of both stillbirths and neonatal deaths has been reported to be slightly increased, although the majority of neonatal deaths are considered to be related to prematurity or to critically ill mothers [3, 25, 26].

COVID-19 may predispose the general population to a thrombotic condition, both in the venous and arterial circulations, due to inflammation, platelet activation, endothelial dysfunction, and stasis [27, 28]. This COVID-19 related hypercoagulability state might intuitively assume an important role in pregnancy due to its inherent prothrombotic state, and might represent a possible cause of the small increase of the rate of stillbirths compared with the baseline population [29–32].

However, we acknowledge that the sample size potentially underpowered for this outcome and the lack of effect of low molecular weight heparin cast some doubt on this hypothesis and do not allow to obtain robust evidence on the risk of stillbirth in pregnancies affected by COVID-19.

Conclusions

Early gestational age at infection, maternal ventilatory supports and low birthweight are the main determinants of adverse perinatal outcomes in fetuses with maternal COVID-19 infection. Conversely, the risk of vertical transmission seems negligible.
Research funding: None declared.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: Authors state no conflict of interest.

Informed consent: Informed consent was obtained from all individuals included in this study.

Ethical approval: The study was approved by the IRB of the University of Naples Federico II (April 2020, approval number: 145/2020).

References

Flaminia Vena, Antonella Giancotti, Roberto Brunelli, Ludovico Muzzi and Pierluigi Benedetti Panici, Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
Rosanna Esposito, Antonio Coviello, Marco Cerbone, Giuseppe Maria Maruotti, Giovanni Nazzaro, Mariavittoria Locci, Maurizio Guida, Attilio Di Spiezo Sardo, Giuseppe Bifulco and Fulvio Zullo, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
Ignacio Herraiz and Cecilia Villalain, Fetal Medicine Unit, Maternal and Child Health and Development Network, University Hospital 12 de Octubre, Complutense University of Madrid, Department of Obstetrics and Gynaecology, Madrid, Spain
María José Rodríguez Suárez, Hospital Universitario Central de Asturias, Asturias, Spain
Zita Maria Gambacorti-Passerini, Department of Obstetrics and Gynaecology, Ciudad Real University General Hospital, Ciudad Real, Spain
María de los Angeles Anaya Baz and Esther Vanessa Aguilar Galán, Department of Obstetrics and Gynaecology, Ciudad Real University General Hospital, Ciudad Real, Spain
Yolanda Cuárraro López, Juan Antonio De León Luis and Ignacio Cueto Hernández, Fetal Medicine Unit, Maternal and Child Health and Development Network, Gregorio Marañón Hospital, Complutense University of Madrid, Department of Obstetrics and Gynaecology, Madrid, Spain
Roberta Venturella, Department of Obstetrics and Gynaecology, School of Medicin, Magna Graecia University of Catanzaro, Catanzaro, Italy
Giuseppe Rizzo, University of Roma Tor Vergata, Division of Maternal Fetal Medicine, Ospedale Cristo Re Roma, Rome, Italy; Department of Obstetrics and Gynaecology The First LM. Sechenov Moscow State Medical University, Moscow, Russia
Ilenia Mappa, University of Roma Tor Vergata, Division of Maternal Fetal Medicine, Ospedale Cristo Re Roma, Rome, Italy
Giovanni Gerosolima, Department of Obstetrics and Gynaecology, Ospedale AOSG Moscati, Avellino, Italy
Lars Hellmeyer, Josefine Königbauer and Giada Ameli, Department of Gynaecology and Obstetrics, Vivantes Klinikum im Friedrichshain, Berlin, Germany
Tiziana Frusca, Nicola Volpe, Giovanni Battista Luca Schera and Stefania Fieni, Department of Obstetrics and Gynaecology, University of Parma, Parma, Italy
Eutalia Esposito, Department of Obstetrics and Gynaecology, Ospedale di San Leonardo, Castellammare di Stabia, Italy
Giuliana Simonazzi, Gaetana Di Donna, Aly Youssef and Anna Nunzia Della Gatta, Department of Obstetrics and Gynaecology, University of Bologna, Sant’Orsola- Malpighi University Hospital, Bologna, Italy
Mariano Catello Di Donna, Vito Chiantera, Natalina Buono and Giulio Sozzi, Department of Gynaecologic Oncology, University of Palermo, Palermo, Sicilia, Italy
Pantaleo Greco, Danila Morano, Beatrice Bianchi and Maria Giulia Lombana Marino, Department of Medical Sciences, Section of Obstetrics and Gynaecology, Azienda Ospedaliera-Universitaria Sant’ Anna, University of Ferrara, Ferrara, Italy
Federica Larau, Arianna Ramone, Angelo Cagnacci, Fabio Barra, Claudio Gustavino and Simone Ferrero, Academic Unit of Obstetrics and Gynaecology, IRCCS Ospedale Policlinico, San Martino, Genova, Italy
Fabio Ghezzi, Antonella Cromi and Antonio Simone Laganà, Department of Obstetrics and Gynaecology, “Filippo Del Ponte” Hospital University of Insubria, Varese, Italy
Valentina Laurita Longo, Department of Obstetrics and Gynaecology, Fondazione Policlinico Universitario A Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy; Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italy; and Queen Margaret University, Institute for Global Health and Development, Edinburgh, UK
Francesca Stollagli and Ludovicia Puri, Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italy
Angelo Sirico and Giovanni Scambia, Department of Obstetrics and Gynaecology, Fondazione Policlinico Universitario A Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
Antonio Lanzone, Department of Obstetrics and Gynaecology, Fondazione Policlinico Universitario A Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy; Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italy
Lorenza Driul, Fabiana Cecchini D and Serena Xodo, Clinic of Obstetrics and Gynaecology, University of Udine, Udine, Italy
Brian Rodriguez, Felipe Mercado-Olivares, Deena Elkafrawi and Giovanni Sisti, Department of Obstetrics and Gynaecology, New York Health and Hospitals/Lincoln Bronx, The Bronx, NY, USA
Maddalena Morlando, Antonio Schiattarella, Nicola Colacurci and Pasquale De Francisci, Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
Ilaria Cataneo, Marinella Lenzi and Fabrizio Sandri, Unit of Obstetrics and Gynaecology, Ospedale Maggiore, Bologna, Italy
Riccardo Buscemi, Giorgia Ghezzi, Francesca della Sala and Maria Cristina Rovellotti, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
Eleonora Valori, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy; Hospital Castelli, Verbana, Italy
Elisa Done, Gilles Faron and Leonardo Gucciardo, UZ Brussel, Universitair Ziekenhuis, Brussel, Belgium
Valentina Esposito, University of Milan, Milan, Italy
Luigi Nappi, Felice Sorrentino and Lorenzo Vasciaveo, Department of Obstetrics and Gynaecology, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy

Marco Liberati, Danilo Buca, Martina Leombroni, Francesca Di Sebastianio, Luciano Di Tizio and Francesco D’Antonio, Centre for High Risk Pregnancy and Fetal Care, University of Chieti, Department of Obstetrics and Gynaecology, Chieti, Italy

Diego Gazzolo, Neonatal Intensive Care Unit, University of Chieti, Chieti Italy

Massimo Franchi, Quintino Cesare Iannicelli and Simone Garzon, Department of Obstetrics and Gynaecology, AOUI Verona, University of Verona, Verona, Italy

Giuliano Petriglia and Leonardo Borrello, Maternal and Child Health Department, Santa Maria Hospital, Terni, Italy

Albaro José Nieto-Calvache and Juan Manuel Burgos-Luna, Fundación Valle del Lili, Tertiary Obstetric Unit, Cali, Colombia; Postgraduate Department, Universidad Icesi, Cali, Colombia

Caroline Kadji, Andrew Carlin and Elisa Bevilacqua, Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium

Marina Mouchj, Pedro Viana Pinto and Rita Figueiredo, Department of Obstetrics and Gynaecology, Centro Hospitalar e Universitário São João, Porto, Portugal

José Morales Roselló, Gabriela Loscalzo, Alicia Martínez-Varea and Vincente Diago, Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe, Valencia, Spain

Jesús S Jimenez Lopez, Hospital Regional Universitario de Málaga, Málaga, Spain

Alicia Yeliz Aykanat, Department of Obstetrics and Gynaecology, Istanbul University-Cerrahpasa Medical School, Istanbul, Turkey

Stefano Cosma, Andrea Carosso and Chiara Benedetto, Department of Obstetrics and Gynaecology, Sant’Anna Hospital, University of Turin, Turin, Italy

Amanda Bermejo, Hospital Universitario de Móstoles, Móstoles, Spain

Otto Henrique May Feuerschuelle, Departamento de Ginecología e Obstetricia, Hospital Universitario Polydoro Ernani, Santiago, Brazil

Ozlem Uyaniklar, Sakine Rahimi Ocakouglu and Zeliha Atak, Bursa City Hospital, Bursa, Turkey

Reyhan Gündüz, Department of Obstetrics and Gynaecology, University of Dicle, Diyarbakir, Turkey

Esra Tustas Haberal, Hisar Intercontinental Hospital, Istanbul, Turkey

Bernd Froessler, Anupam Parange and Peter Palm, Department of Anaesthesiology, Lyell McEwin Hospital, Adelaide, Australia

Igor Samardjiski, University Clinic of Obstetrics and Gynaecology, Skopje, North Macedonia Chiara Taccaliti, Ospedale Generale Regionale “F. Miulli”, Acquaviva delle Fonti, Italy

Erhan Okuyan, Batman Maternity and Child Health Hospital, Batman, Turkey

George Daskalakis and Panos Antsaklis, Alexandra Hospital – National and Kapodistrian, University of Athens, Athens, Greece

Renato Augusto Moreira de Sa, Assistência Obstétrica do Grupo Perinatal, Rio de Janeiro, Brazil

Alejandro Pittaro, Hospital Raul F. Larcade, Buenos Aires, Argentina

Maria Luisa Gonzalez-Duran and Ana Concheiro Guisan, Alvaro Cunqueiro University Hospital of Vigo, Vigo, Spain

Serife Özlem Genç, Karaman Public Hospital, Karaman, Turkey

Blanka Zlatohlávková, Department of Obstetrics and Gynaecology, Division of Neonatology, General Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic

Anna Luengo Piqueras and Dolores Esteban Oliva, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain

Aylin Pelin Cil and Olus Api, American Hospital, Istanbul, Turkey

Liana Ples, Department of Obstetrics and Gynaecology, Saint John Hospital, UMF Carol Davila, Bucharest, Romania

Ioannis Kyvernitakis, Holger Maul and Marcel Malan, Asklepios Hospital Barmbek, Hamburg, Germany

Albert Lila, Regional Hospital Gjakova, Kosovo, Republic of Kosovo

Roberta Granese, Alfredo Ercoli and Giuseppe Zoccali, Department of Obstetrics and Gynaecology, University of Messina, Messina, Italy

Andrea Villasco and Nicoletta Biglia, Academic Division of Obstetrics and Gynaecology, Mauriziano Umberto I Hospital, University of Turin, Turin, Italy

Ciuhodaru Madalina, Universitatea de Medicina ?i Farmacie Grigore T. Popa Iasi, Iasi, Romania

Elena Costa, Caroline Daeleamans and Axelle Pintiaux, Department of Obstetrics and Gynaecology, Hospital Erasme, Cliniques Universitaires de Bruxelles, Brussels, Belgium

Elisa Cueto, Hospital Virgen De La Luz, Cuenca, Spain

Eran Hadar, Sarah Dollinger and Noa A. Brzezinski Sinai, Helen Schneider Hospital for Women, Robin Medical Center, Petach-Tikva and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel

Erasmo Huertas, Pedro Arango and Amadeo Sanchez, Instituto Nacional Materno Perinatal, Lima, Peru

Javier Alfonso Schvartzman, Centro de Educación Médica e Investigaciones Clinicas “Norberto Quirno”, Buenos Aires, Argentina

Liviu Cojocaru, Sifa Turan and Ozhan Turan, Department of Obstetrics, Gynaecology and Reproductive Science, University of Maryland Medical Center, Baltimore, MD, USA

Maria Carmela Di Dedda, Department Gynaecology and Obstetrics, Fornaroli Hospital, Magenta, Italy